Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Crister Ceberg

Professor

Default user image.

Quality control of measured x-ray beam data

Författare

  • Bengt E Bjärngard
  • Paul Vadash
  • Crister Ceberg

Summary, in English

The purpose of this study was to examine whether the quality of measured x-ray beam data can be judged from how well the data agree with a semiempirical formula. Tissue-phantom ratios (TPR) and output factors for several accelerators in the energy range 4-25 MV were fitted to the formula, separating the dose contributions from primary and phantom-scattered photons. The former was described by exponential attenuation in water, with beam hardening, and the latter by the scatter-to-primary dose ratio using two parameters related to the probability and the directional distribution of the scattered photons. Electron disequilibrium was not considered. Two approaches were evaluated. In one, the attenuation and hardening coefficients were determined from measurements in a narrow-beam geometry; in the other, they were extracted by the fitting procedure. Measured and fitted data agreed within +/- 2% in both cases. The differences were randomly distributed and had a standard deviation of typically 0.7%. Singular points with errors were easily identified. Systematic errors were revealed by increased standard deviation. However, when the attenuation was derived by the fitting algorithm, the attenuation coefficient deviated significantly from the experimental value. It is concluded that the semiempirical formula can serve to evaluate and verify beam data measured in water and that the physically most accurate description requires that the attenuation and hardening coefficients be determined in a narrow-beam geometry. The attenuation coefficient is an excellent measure of both the primary and the scatter dose component, i.e., of beam quality.

Avdelning/ar

  • Medicinsk strålningsfysik, Lund

Publiceringsår

1997

Språk

Engelska

Sidor

1441-1444

Publikation/Tidskrift/Serie

Medical Physics

Volym

24

Issue

9

Dokumenttyp

Artikel i tidskrift

Förlag

American Association of Physicists in Medicine

Ämne

  • Biophysics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0094-2405