Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Linda Knutsson

Professor

Default user image.

Non-parametric deconvolution using Bézier curves for quantification of cerebral perfusion in dynamic susceptibility contrast MRI

Författare

  • Arthur Chakwizira
  • André Ahlgren
  • Linda Knutsson
  • Ronnie Wirestam

Summary, in English

Objective Deconvolution is an ill-posed inverse problem that tends to yield non-physiological residue functions R(t) in
dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). In this study, the use of Bézier curves is proposed
for obtaining physiologically reasonable residue functions in perfusion MRI.
Materials and methods Cubic Bézier curves were employed, ensuring R(0)=1, bounded-input, bounded-output stability and
a non-negative monotonically decreasing solution, resulting in 5 parameters to be optimized. Bézier deconvolution (BzD),
implemented in a Bayesian framework, was tested by simulation under realistic conditions, including efects of arterial delay
and dispersion. BzD was also applied to DSC-MRI data from a healthy volunteer.
Results Bézier deconvolution showed robustness to diferent underlying residue function shapes. Accurate perfusion estimates were observed, except for boxcar residue functions at low signal-to-noise ratio. BzD involving corrections for delay,
dispersion, and delay with dispersion generally returned accurate results, except for some degree of cerebral blood fow
(CBF) overestimation at low levels of each efect. Maps of mean transit time and delay were markedly diferent between
BzD and block-circulant singular value decomposition (oSVD) deconvolution.
Discussion A novel DSC-MRI deconvolution method based on Bézier curves was implemented and evaluated. BzD produced physiologically plausible impulse response, without spurious oscillations, with generally less CBF underestimation
than oSVD.

Avdelning/ar

  • Medicinsk strålningsfysik, Lund
  • MR Physics
  • MultiPark: Multidisciplinary research focused on Parkinson´s disease

Publiceringsår

2022-10

Språk

Engelska

Sidor

791-804

Publikation/Tidskrift/Serie

Magnetic Resonance Materials in Physics, Biology, and Medicine

Volym

35

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Radiology, Nuclear Medicine and Medical Imaging
  • Other Physics Topics

Status

Published

Forskningsgrupp

  • MR Physics

ISBN/ISSN/Övrigt

  • ISSN: 1352-8661