Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Linda Knutsson

Professor

Default user image.

The role of cartilage glycosaminoglycan structure in gagCEST

Författare

  • Emma Einarsson
  • Pernilla Peterson
  • Patrik Önnerfjord
  • Michael Gottschalk
  • Xiang Xu
  • Linda Knutsson
  • Leif E Dahlberg
  • André Struglics
  • Jonas Svensson

Summary, in English

Glycosaminoglycan (GAG) chemical exchange saturation transfer (gagCEST) is a potential method for cartilage quality assessment. The aim of this study was to investigate how the gagCEST effect depends on the types and molecular organization of GAG typically found in articular cartilage. gagCEST was performed on different concentrations of GAG in various forms: free chains of chondroitin sulfate (CS) of different types (-A and -C) and GAG bound to protein in aggregated and nonaggregated aggrecan extracted from calf articular cartilage. The measured magnetization transfer ratio asymmetry (MTRasym ) was compared with known GAG concentrations or GAG concentrations determined through biochemical analysis. The gagCEST effect was assessed through the linear regression coefficient with 95% confidence interval of MTRasym per GAG concentration. We observed a lower gagCEST effect in phantoms containing a mixture of CS-A and CS-C compared with phantoms containing mainly CS-A. The difference in response corresponds well to the difference in CS-A concentration. GAG bound in aggrecan from calf articular cartilage, where CS-A is assumed to be the major type of GAG, produed a similar gagCEST effect as that observed for free CS-A. The effect was also similar for aggregated (ie, bound to hyaluronic acid) and nonaggregated aggrecan. In conclusion, our results indicate that the aggrecan structure in itself does not impact the gagCEST effect, but that the effect is strongly dependent on GAG type. In phantoms, the current implementation of gagCEST is sensitive to CS-A while for CS-C, the main GAG component in mature human articular cartilage, the sensitivity is limited. This difference in gagCEST sensitivity between GAG types detected in phantoms is a strong motivation to also explore the possibility of a similar effect in vivo.

Avdelning/ar

  • Medicinsk strålningsfysik, Malmö
  • Ortopedi - klinisk och molekylär osteoporosforskning
  • MR Physics
  • Reumatologi och molekylär skelettbiologi
  • Molekylär skelettbiologi
  • No translation available
  • Lund University Bioimaging Center
  • Medicinsk strålningsfysik, Lund
  • Lund OsteoArthritis Division - From molecule to clinical implementation
  • Ortopedi, Lund
  • Lund OsteoArthritis Division - Nedbrytning av ledbrosk: en biologisk process som leder till artros

Publiceringsår

2020-05

Språk

Engelska

Publikation/Tidskrift/Serie

NMR in Biomedicine

Volym

33

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Analytical Chemistry
  • Biochemistry and Molecular Biology
  • Other Physics Topics

Status

Published

Forskningsgrupp

  • Medical Radiation Physics, Malmö
  • Orthopedics - Clinical and Molecular Osteoporosis Research
  • MR Physics
  • Molecular Skeletal Biology
  • No translation available
  • Lund OsteoArthritis Division - From molecule to clinical implementation
  • Lund OsteoArthritis Division - Molecular marker research group

ISBN/ISSN/Övrigt

  • ISSN: 0952-3480