Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

X-ray Phase-contrast imaging

Martin Bech

Universitetslektor

X-ray Phase-contrast imaging

X-ray in-line holography and holotomography at the NanoMAX beamline

Författare

  • Sebastian Kalbfleisch
  • Yuhe Zhang
  • Maik Kahnt
  • Khachiwan Buakor
  • Max Langer
  • Till Dreier
  • Hanna Dierks
  • Philip Stjärneblad
  • Emanuel Larsson
  • Korneliya Gordeyeva
  • Lert Chayanun
  • Daniel Söderberg
  • Jesper Wallentin
  • Martin Bech
  • Pablo Villanueva-Perez

Summary, in English

Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffraction-limited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.

Avdelning/ar

  • MAX IV-laboratoriet
  • Synkrotronljusfysik
  • NanoLund: Centre for Nanoscience
  • Medicinsk strålningsfysik, Lund
  • X-ray Phase Contrast
  • Institutionen för byggvetenskaper
  • Hållfasthetslära
  • LUNARC - Centrum för Tekniska och Vetenskapliga Beräkningar vid Lunds Universitet

Publiceringsår

2022-01-01

Språk

Engelska

Sidor

224-229

Publikation/Tidskrift/Serie

Journal of Synchrotron Radiation

Volym

29

Issue

Pt 1

Dokumenttyp

Artikel i tidskrift

Förlag

International Union of Crystallography

Ämne

  • Atom and Molecular Physics and Optics
  • Accelerator Physics and Instrumentation
  • Other Physics Topics

Nyckelord

  • 2D and 3D X-ray imaging
  • coherent imaging
  • diffraction-limited storage ring
  • holography
  • holotomography

Status

Published

Forskningsgrupp

  • X-ray Phase Contrast

ISBN/ISSN/Övrigt

  • ISSN: 1600-5775