Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

X-ray Phase-contrast imaging

Martin Bech

Universitetslektor

X-ray Phase-contrast imaging

3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography.

Författare

  • Jian Fu
  • Xinhua Hu
  • Astrid Velroyen
  • Martin Bech
  • Ming Jiang
  • Franz Pfeiffer

Summary, in English

Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

Avdelning/ar

  • Medicinsk strålningsfysik, Lund

Publiceringsår

2015

Språk

Engelska

Publikation/Tidskrift/Serie

PLoS ONE

Volym

10

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Public Library of Science (PLoS)

Ämne

  • Radiology, Nuclear Medicine and Medical Imaging

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1932-6203