Ronnie Wirestam
Professor
Dynamic contrast-enhanced QSM for perfusion imaging : a systematic comparison of ΔR2*- and QSM-based contrast agent concentration time curves in blood and tissue
Författare
Summary, in English
OBJECTIVE: In dynamic susceptibility contrast MRI (DSC-MRI), an arterial input function (AIF) is required to quantify perfusion. However, estimation of the concentration of contrast agent (CA) from magnitude MRI signal data is challenging. A reasonable alternative would be to quantify CA concentration using quantitative susceptibility mapping (QSM), as the CA alters the magnetic susceptibility in proportion to its concentration.
MATERIAL AND METHODS: AIFs with reasonable appearance, selected on the basis of conventional criteria related to timing, shape, and peak concentration, were registered from both ΔR2* and QSM images and mutually compared by visual inspection. Both ΔR2*- and QSM-based AIFs were used for perfusion calculations based on tissue concentration data from ΔR2*as well as QSM images.
RESULTS: AIFs based on ΔR2* and QSM data showed very similar shapes and the estimated cerebral blood flow values and mean transit times were similar. Analysis of corresponding ΔR2* versus QSM-based concentration estimates yielded a transverse relaxivity estimate of 89 s-1 mM-1, for voxels identified as useful AIF candidate in ΔR2* images according to the conventional criteria.
DISCUSSION: Interestingly, arterial concentration time curves based on ΔR2* versus QSM data, for a standard DSC-MRI experiment, were generally very similar in shape, and the relaxivity obtained in voxels representing blood was similar to tissue relaxivity obtained in previous studies.
Avdelning/ar
- MR Physics
- Medicinsk strålningsfysik, Lund
- LUCC: Lunds universitets cancercentrum
- Diagnostisk radiologi, Lund
- MultiPark: Multidisciplinary research focused on Parkinson´s disease
Publiceringsår
2020-10
Språk
Engelska
Sidor
663-676
Publikation/Tidskrift/Serie
Magnetic Resonance Materials in Physics, Biology, and Medicine
Volym
33
Issue
5
Dokumenttyp
Artikel i tidskrift
Förlag
Springer
Ämne
- Radiology, Nuclear Medicine and Medical Imaging
- Other Physics Topics
Aktiv
Published
Projekt
- Optimisation and Validation of Dynamic Susceptibility Contrast MRI
Forskningsgrupp
- MR Physics
ISBN/ISSN/Övrigt
- ISSN: 1352-8661