Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Ronnie Wirestam

Professor

Default user image.

Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data.

Författare

  • André Ahlgren
  • Linda Knutsson
  • Ronnie Wirestam
  • Markus Nilsson
  • Freddy Ståhlberg
  • Daniel Topgaard
  • Samo Lasič

Summary, in English

The aim of this study was to improve the accuracy and precision of perfusion fraction and blood velocity dispersion estimates in intravoxel incoherent motion (IVIM) imaging, using joint analysis of flow-compensated and non-flow-compensated motion-encoded MRI data. A double diffusion encoding sequence capable of switching between flow-compensated and non-flow-compensated encoding modes was implemented. In vivo brain data were collected in eight healthy volunteers and processed using the joint analysis. Simulations were used to compare the performance of the proposed analysis method with conventional IVIM analysis. With flow compensation, strong rephasing was observed for the in vivo data, approximately cancelling the IVIM effect. The joint analysis yielded physiologically reasonable perfusion fraction maps. Estimated perfusion fractions were 2.43 ± 0.81% in gray matter, 1.81 ± 0.90% in deep gray matter, and 1.64 ± 0.72% in white matter (mean ± SD, n = 8). Simulations showed improved accuracy and precision when using joint analysis of flow-compensated and non-flow-compensated data, compared with conventional IVIM analysis. Double diffusion encoding with flow compensation was feasible for in vivo imaging of the perfusion fraction in the brain. The strong rephasing implied that blood flowing through the cerebral microvascular system was closer to the ballistic limit than the diffusive limit. © 2016 The Authors NMR in Biomedicine published by John Wiley & Sons Ltd.

Avdelning/ar

  • MultiPark: Multidisciplinary research focused on Parkinson´s disease
  • Medicinsk strålningsfysik, Lund
  • MR Physics
  • Multidimensional microstructure imaging
  • Lund University Bioimaging Center
  • Diagnostisk radiologi, Lund
  • Fysikalisk kemi
  • eSSENCE: The e-Science Collaboration

Publiceringsår

2016-03-08

Språk

Engelska

Sidor

640-649

Publikation/Tidskrift/Serie

NMR in Biomedicine

Volym

29

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Medical Laboratory and Measurements Technologies
  • Other Physics Topics

Status

Published

Forskningsgrupp

  • MR Physics
  • Multidimensional microstructure imaging

ISBN/ISSN/Övrigt

  • ISSN: 0952-3480