Computerized treatment planning systems - II
CRISTER CEBERG
Modern computerized treatment planning
Modern computerized treatment planning
Generally available hardware

» Network solutions
 – Servers
 – Workstations
 – Citrix clients

Dell Precision T5400/T5500
...not so accessible software

» Documentation
 – Scientific papers
 – Reference manuals

» The implementation is still often a "black box"!

» We will look at general features and examples
Types of dose calculation algorithms

<table>
<thead>
<tr>
<th>Type</th>
<th>Data required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on measured data</td>
<td>Large amounts of measured data are entered directly into the TPS and reproduced by the algorithm; depth dose profile data may be entered directly into the TPS</td>
</tr>
<tr>
<td>Analytical functions</td>
<td>Analytical functions model the physics, but the parameters for the functions are usually fitted using measured data</td>
</tr>
<tr>
<td></td>
<td>The tissue air ratio–scatter air ratio (TAR–SAR) separation of primary and scatter components could be considered, as well as a superposition of differential elements</td>
</tr>
<tr>
<td>Superposition of differential elements</td>
<td>Algorithm integrates over differential dose elements; spectral data and some representation of the photon fluence are required, but limited other parameters are needed</td>
</tr>
<tr>
<td>Monte Carlo based models</td>
<td>Virtually all input data are the basic physics of interactions, and include very little measured data; however, most Monte Carlo methods involve modelling of the machine collimation system and radiation sources, etc.</td>
</tr>
</tbody>
</table>
Types of dose calculation algorithms

<table>
<thead>
<tr>
<th>Algorithm Type</th>
<th>Data Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on measured data</td>
<td>Large amounts of measured data are entered directly into the TPS and reproduced by the algorithm; depth dose profile data may be entered directly into the TPS.</td>
</tr>
<tr>
<td>Analytical functions</td>
<td>Analytical functions model the physics, but the parameters for the functions are usually fitted using measured data. The tissue air ratio–scatter air ratio (TAR–SAR) separation of primary and scatter components could be considered, as well as a superposition of differential elements.</td>
</tr>
<tr>
<td>Superposition of differential elements</td>
<td>Algorithm integrates over differential dose elements; spectral data and some representation of the photon fluence are required, but limited other parameters are needed.</td>
</tr>
<tr>
<td>Monte Carlo based models</td>
<td>Virtually all input data are the basic physics of interactions, and include very little measured data; however, most Monte Carlo methods involve modelling of the machine collimation system and radiation sources, etc.</td>
</tr>
</tbody>
</table>
CT for patient information

- Diagnostic tools
- Target determination
- Basis for calculations
 - Hounsfield units

\[HU = 1000 \times \frac{\mu - \mu_{H_2O}}{\mu_{H_2O}} \]
Conversion to electron density
The Hounsfield scale
Patients in motion
Creating a voxel matrix

» Map to each voxel
 - Tissue type
 - Composition and density
 - Interaction properties
 » σ_{photo}, σ_{compton}, σ_{pair}
General components of calculation models

- Incident photon fluence
- Raytracing
- Redistribution of energy
Incident fluence

- Primary target
- Flattening filter
- Y-jaws
- X-jaws
- MLC
Primary and secondary sources

- Flattening filter source
- Fluence grid at the isocenter plane
 2 x 2 mm

RayStation
Primary source

Beam profile Gaussian primary source Incident primary profile

(can also be a wedge profile)

Profile slope and source width are fitting parameters
Flattening filter source

Gaussian secondary source

Calc point’s view

Head scatter contribution
Collimator scatter source

» Transmission and leakage

» Scatter from visible surfaces
Incident photon fluence

- The total incident photon fluence
 - Primary source
 - Flattening filter
 - Collimator scatter

- Spectrum $\Psi_0(E_i)$
Incident photon fluence

- The total incident photon fluence
 - Primary source
 - Flattening filter
 - Collimator scatter
- Raytracing through density matrix
Raytracing

Incident ray \(\Psi_0(E_i) \)

Attenuation

\[
\Psi(\vec{r}, E_i) = \Psi_0(E_i) \exp \left[- \int_{\vec{r}_0}^{\vec{r}} \mu(\vec{r}', E_i) \, dl \right]
\]

Total energy released in matter (TERMA)

\[
T(\vec{r}) = \int_{E} \frac{\mu(\vec{r}, E')}{\rho_m(\vec{r})} \Psi(\vec{r}, E') \, dE
\]
Redistribution of energy

Incident ray

Raytracing $T(\bar{r})$

Redistribution of energy

$\Psi_0(E_i)$
Kernel

Incident ray \(\Psi_0(E_i) \)

Raytracing \(T(\vec{r}) \)

Redistribution of energy \(A(\vec{r}_c, \vec{r}) \)
Monte Carlo calculated kernels

- Absorbed dose distribution around a single interaction point
- Example for 1.25 MeV

Monte Carlo calculated kernels

- Library of mono-energetic kernels
- Estimate of linac spectrum (fitting parameter)
- Composite poly-energetic kernel is obtained by summation
Monte Carlo calculated kernels

\[A(r) = \frac{c_1 \cdot e^{-ar}}{r^2} + \frac{c_2 \cdot e^{-br}}{r^2} \]

Ahnesjö, Med Phys 16:577-592, 1989
Kernel

Incident ray \(\Psi_0(E_i) \)

Raytracing \(T(\bar{r}) \)

Redistribution of energy \(A(\bar{r}_c, \bar{r}) \)
Kernel integration

Incident ray

Raytracing $T(\bar{r})$

Redistribution of energy $A(\bar{r}_c, \bar{r})$

$D(\bar{r}_c) = \int_V T(\bar{r}) \cdot A(\bar{r}_c, \bar{r}) dV$
Kernel integration

» Interaction vs. deposition point-of-view
Kernel integration

\[D(\bar{r}_c) = \int_T T(\bar{r}) \cdot A(\bar{r}_c, \bar{r}) \, dV \]

» Convolution

- Invariant kernel

- \[D(\bar{r}_c) = T(\bar{r}) \otimes A(\bar{r}_c, \bar{r}) = \text{FFT}^{-1}[\text{FFT}(T) \cdot \text{FFT}(A)] \]

» Superposition

- Variation of energy, divergence, density

- \[D(\bar{r}_c) = \sum T(\bar{r}) \cdot A(\bar{r}_c, \bar{r}) \]
Convolution (2D)

TERMA \ast \text{Dose Deposition Kernel} = \text{Absorbed Dose}

Tommy Knöös
Example – XiO FFT

» Poly-energetic kernels are obtained from Mackie’s kernel library, re-sampled to Cartesian coordinates

» Separate kernels for primary and scatter dose
 – Primary part integrated with high resolution in small volume
 – Scatter part with lower resolution over larger volume

» FFT-based convolution
 – Large time saving (65%)
 – Effects of invariant kernel
Limitations

» Kernels are not invariant
 - Energy distribution varies with position (beam hardening and beam softening)
 - Divergence
 - Density variations

» Approximations are needed
 - FFT convolution requires invariant kernels
 - Analytical methods are time consuming
Pencil-beam approximation

- Pre-convolving depth dimension

![Graph showing relative fluence versus depth](image1.png)

Tommy Knöös
Pencil-beam approximation

» Reduce calculation from 3D -> 2D => faster

Energy fluence \times \text{Deposition Kernel} = \text{Absorbed Dose}

Tommy Knöös
Pencil-beam kernels

Monte Carlo calculations (standard)

Use of fast Fourier transforms in calculating dose distributions for irregularly shaped fields for three-dimensional treatment planning

Radhe Mohan and Chen-Shou Chui
Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

(Received 30 June 1986; accepted for publication 22 October 1986)

A pencil beam model for photon dose calculation

Anders Ahnesjö
Department of Radiation Physics, Karolinska Institute, Stockholm, Sweden and Helax AB, Box 1704, S-751 47 Uppsala, Sweden

Mikael Saxner and Avo Trepp
Helax AB, Box 1704, S-751 47 Uppsala, Sweden

(Received 29 October 1990; accepted for publication 1 July 1991)

Extracted from measurements

Extraction of pencil beam kernels by the deconvolution method

Chen-Shou Chui and Radhe Mohan
Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

(Received 15 June 1987; accepted for publication 14 December 1987)

Experimental determination of the dose kernel in high-energy x-ray beams

Crister P. Ceberg and Bengt E. Bjärgard
Department of Radiation Oncology, Roger Williams Medical Center, Brown University, Providence, Rhode Island 02908-4735

Timothy C. Zhu
Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida 32610-0385

(Received 26 June 1995; accepted for publication 12 December 1995)
Example – MasterPlan PB

» Pencil-beam kernels based on Monte Carlo calculated point-spread kernels, integrated and fitted to depth dose curves

» Separates primary and scatter components

» Heterogeneities handled by effective path-length (i.e. only longitudinal scaling)

\[
p(r, z) = \frac{A(z) \cdot e^{-a(z)r}}{r} + \frac{B(z) \cdot e^{-b(z)r}}{r}
\]
Pencil-beam limitations

» Assumes scatter-dose integration at effective depth
Pencil-beam limitations

- Assumes electron equilibrium in inhomogeneities
Example – Eclipse AAA

» Monte Carlo calculated pencil-beams

» Divergent, finite-size beamlets

» Heterogeneity correction
 – Effective depth in longitudinal direction
 – Lateral density-scaling
Collapsed-cone approximation

The kernel is "collapsed" to a finite number of cones
Collapsed-cone approximation

...not so

...more like so
Collapsed-cone approximation

» Fixed number of transport directions ("cones" or "channels")

» >100 cones are required

Ahnesjö, Med Phys 16:577, 1989
Flexible approach

- Density scaling along each transport ray
- Heterogeneity correction in all directions (3D)
- Can account for beam-hardening and off-axis softening
- Can include kernel tilt in divergent beams
- Sparse or variable calculation grid ("multi-grid" or "adaptive")
 - Gradient dependent
 - Interpolation
Summary

» Incident photon fluence
» Raytracing
» Redistribution of energy
 – Pencil-beam
 – Collapsed cone
Summary

- Incident photon fluence
- Raytracing
- Redistribution of energy
 - Pencil-beam
 - Collapsed cone
Electron contamination

Integration of electron pencil-beam kernel
Electron contamination

» Important for *in vivo* dosimetry
Comparison between different algorithms

» Type A models
 - Primarily based on effective-path length correction
 - Longitudinal scaling only

» Type B models
 - Approximate handling of lateral electron transport
 - Longitudinal and lateral scaling
Comparison between different algorithms

» Water phantom with low-density (0.2 g/cm3) "lung" insert
Comparison between different algorithms

» Water phantom with low-density (0.2 g/cm3) "lung" insert
Comparison between different algorithms

Clinical example – breast treatment

10, 30, 50, 70, 90, 95, 100 & 105%

CC: Slightly lower dose to breast and especially in lung in proximity to the target. However, larger irradiated lung volume
Clinical example – lung treatment

10, 30, 50, 70, 90, 95, 100 & 105 %

PB

CC: Average dose in PTV 2-4% lower, and wider penumbra. Max dose to ipsi-lateral lung 10% lower. Similar dose to contra-lateral lung.
Two atoms are sitting in a field of ionizing radiation.

One atom says, "I think I lost an electron."

The other says, "Are you sure?"

The first atom says, "I'm positive!"