Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Katarina Sjögreen Gleisner

Professor

Default user image.

3D printed non-uniform anthropomorphic phantoms for quantitative SPECT

Författare

  • Lovisa Jessen
  • Johan Gustafsson
  • Michael Ljungberg
  • Selma Curkic-Kapidzic
  • Muris Imsirovic
  • Katarina Sjögreen-Gleisner

Summary, in English

Background: A 3D printing grid-based method was developed to construct anthropomorphic phantoms with non-uniform activity distributions, to be used for evaluation of quantitative SPECT images. The aims were to characterize the grid-based method and to evaluate its capability to provide realistically shaped phantoms with non-uniform activity distributions. Methods: Characterization of the grid structures was performed by printing grid-filled spheres. Evaluation was performed by micro-CT imaging to investigate the printing accuracy and by studying the modulation contrast (CM) in SPECT images for 177Lu and 99mTc as a function of the grid fillable-volume fraction (FVF) determined from weighing. The grid-based technique was applied for the construction of two kidney phantoms and two thyroid phantoms, designed using templates from the XCAT digital phantoms. The kidneys were constructed with a hollow outer container shaped as cortex, an inner grid-based structure representing medulla and a solid section representing pelvis. The thyroids consisted of two lobes printed as grid-based structures, with void hot spots within the lobes. The phantoms were filled with solutions of 177Lu (kidneys) or 99mTc (thyroids) and imaged with SPECT. For verification, Monte Carlo simulations of SPECT imaging were performed for activity distributions corresponding to those of the printed phantoms. Measured and simulated SPECT images were compared qualitatively and quantitatively. Results: Micro-CT images showed that printing inaccuracies were mainly uniform across the grid. The relationships between the FVF from weighing and CM were found to be linear (r = 0.9995 and r = 0.9993 for 177Lu and 99mTc, respectively). The FVF-deviations from the design were up to 15% for thyroids and 4% for kidneys, mainly related to possibilities of cleaning after printing. Measured and simulated SPECT images of kidneys and thyroids exhibited similar activity distributions and quantitative comparisons agreed well, thus verifying the grid-based method. Conclusions: We find the grid-based technique useful for the provision of 3D printed, realistically shaped, phantoms with non-uniform activity distributions, which can be used for evaluation of different quantitative methods in SPECT imaging.

Avdelning/ar

  • Medicinsk strålningsfysik, Lund
  • Nuclear Medicine Physics

Publiceringsår

2024-12

Språk

Engelska

Publikation/Tidskrift/Serie

EJNMMI Physics

Volym

11

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Radiology, Nuclear Medicine and Medical Imaging

Nyckelord

  • 3D printing
  • Kidneys
  • Monte Carlo
  • Phantom
  • Quantitative SPECT
  • Thyroid

Status

Published

Forskningsgrupp

  • Nuclear Medicine Physics

ISBN/ISSN/Övrigt

  • ISSN: 2197-7364