Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Katarina Sjögreen Gleisner

Professor

Default user image.

A method for tumor dosimetry based on hybrid planar-SPECT/CT images and semiautomatic segmentation

Författare

  • Daniel Roth
  • Johan Gustafsson
  • Anna Sundlöv
  • Katarina Sjögreen Gleisner

Summary, in English

Purpose: A hybrid planar-SPECT/CT method for tumor dosimetry in 177Lu-DOTATATE therapy, applicable to datasets consisting of multiple conjugate-view images and one SPECT/CT, is developed and evaluated. Methods: The imaging protocol includes conjugate-view imaging at 1, 24, 96, and 168 h post infusion (p.i.) and a SPECT/CT acquisition 24 h p.i. The dosimetry method uses the planar images to estimate the shape of the time–activity concentration curve, which is then rescaled to absolute units using the SPECT-derived activity concentration. The resulting time-integrated activity concentration coefficient (TIACC) is used to calculate the tumor-absorbed dose. Semiautomatic segmentation techniques are applied for tumor delineation in both planar and SPECT images, where the planar image segmentation is accomplished using an active-rays-based technique. The selection of tumors is done by visual inspection of planar and SPECT images and applying a set of criteria concerning the tumor visibility and possible interference from superimposed activity uptakes in the planar images. Five different strategies for determining values from planar regions of interest (ROIs), based on entire or partial ROIs, and with and without background correction, are evaluated. Evaluation is performed against a SPECT/CT-based method on data from six patients where sequential conjugate-view and SPECT/CT imaging have been performed in parallel and against ground truths in Monte Carlo simulated images. The patient data are also used to evaluate the interoperator variability and to assess the validity of the developed criteria for tumor selection. Results: For patient images, the hybrid method produces TIACCs that are on average 6% below those of the SPECT/CT only method, with standard deviations for the relative TIACC differences of 8%–11%. Simulations show that the hybrid and SPECT-based methods estimate the TIACCs to within approximately 10% for tumors larger than around 10 ml, while for smaller tumors, all methods underestimate the TIACCs due to underestimations of the activity concentrations in the SPECT images. The planar image segmentation has a low operator dependence, with a median Dice similarity coefficient of 0.97 between operators. The adopted criteria for tumor selection manage to discriminate the tumors for which the absorbed-dose deviations between the hybrid and SPECT methods are the highest. Conclusions: The hybrid method is found suitable for studies of tumor-absorbed doses in radionuclide therapy, provided that selection criteria regarding the visibility and overlapping activities in the planar images are applied.

Avdelning/ar

  • Medicinsk strålningsfysik, Lund
  • Tumörmikromiljö

Publiceringsår

2018-11

Språk

Engelska

Sidor

5004-5018

Publikation/Tidskrift/Serie

Medical Physics

Volym

45

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

American Association of Physicists in Medicine

Ämne

  • Radiology, Nuclear Medicine and Medical Imaging
  • Cancer and Oncology
  • Other Physics Topics

Nyckelord

  • dosimetry
  • image segmentation
  • peptide receptor radionuclide therapy
  • radionuclide therapy

Status

Published

Projekt

  • Dosimetry in radionuclide therapy

ISBN/ISSN/Övrigt

  • ISSN: 0094-2405