Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Ceberg

Crister Ceberg

Professor

Ceberg

Independent checking of the delivered dose for high-energy X-rays using a hand-held PC

Författare

  • Tommy Knöös
  • Stefan Johnsson
  • Crister Ceberg
  • Andrej Tomaszewicz
  • Per Nilsson

Summary, in English

Background and purpose: The requirements on the delivered dose in radical radiation therapy are extremely high. The dose should be within a few percent and also delivered with high accuracy in space. Vendors and users have successfully managed to implement radiation therapy systems, which are able to achieve these demands with high accuracy and reproducibility. These systems include computerized tomography scanners, treatment planning systems, simulators, treatment machines, and record and verify systems. More and more common are also computer networks to assure data integrity when transferring information between the systems. Even if these systems are commissioned and kept under quality assurance programs to maintain their accuracy, errors may be introduced. Especially, the human factor is an uncontrolled parameter that may introduce errors. Thus, unintentional changes or incorrect handling of data may occur during clinical use of the equipment. Having an independent dose calculation system implemented in the daily quality assurance process may assure a high quality of treatments and avoidance of severe errors.Materials and methods: To accomplish this, a system of equations for calculating the absorbed dose to the prescription point from the set-up information, has been compiled into a dose-calculation engine. The model is based on data completely independent of the treatment planning system (TPS). The fundamental parameter in the dose engine is the linear attenuation coefficient for the primary photons. This parameter can readily be determined experimentally. The dose calculation engine has been programmed into a hand-held PC allowing direct calculation of the dose to the prescription point when the first treatment is delivered to the patient.Results and conclusion: The model is validated with measurements and is shown to be within +/-1.0% (1 SD). Comparison against a state-of-the-art TPS shows an average difference of 0.3% with a standard deviation of +/-2.1%. An action level covering 95% of the cases has been chosen, i.e. +/-4.0%. Deviations larger than this are with a high probability due to erroneous handling of the patient set-up data. This system has been implemented into the daily clinical quality control program.

Avdelning/ar

  • Medicinsk strålningsfysik, Lund

Publiceringsår

2001

Språk

Engelska

Sidor

201-208

Publikation/Tidskrift/Serie

Radiotherapy and Oncology

Volym

58

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Radiology, Nuclear Medicine and Medical Imaging

Nyckelord

  • Radiation therapy
  • Quality assurance
  • Monitor calculation
  • Independent check

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 1879-0887